Computer Programming Fundamentals

CS 152
Professor: Leah Buechley
TAs: Melody Horn, Noah Garcia, Andrew Geyko, Juan Ormaza
Time: MWF 10:00-10:50am
https.//handandmachine.cs.unm.edu/classes/CS152_Fall2021/



ASSIGNMENT 3 DUE TODAY



QUIZ 1 GRADED



LEARN ISSUE



TODAY: CLASSES AND OBJECTS cont.



import java.awt.*;

public class Ball {
Color color;
int size;

int xPosition;
int yPosition;
int xSpeed;
int ySpeed;

Ball () {
color = Color.PINK;
size = 50;
xPosition = 100;
yPosition = 100;
xSpeed = 1;
ySpeed = 1;

}

Ball (Color color, int size, int xPosition, int yPosition) {
this.color = color;
this.size = size;
this.xPosition = xPosition;
this.yPosition = yPosition;
xSpeed = 0;
ySpeed = 0;
}

public static void main(String[] args) {
Ball ball;
ball = new Ball();
ball.move();

Ball ball2;

ball2 = new Ball(Color.BLUE, 100, 10, 500);
System.out.println("ball2 xPosition: " +ball2.xPosition);
ball2.setSpeed(100,100);

ball2.move();

System.out.println("ball2 xPosition after move: " +ball2.xPosition);

}

void move() {
xPosition = xPosition + xSpeed;
yPosition = yPosition + ySpeed;

}

void setSpeed (int xSpeed, int ySpeed) {
this.xSpeed = xSpeed;
this.ySpeed = ySpeed;



import java.awt.*;

public class Ball {
Color color;

int size; variable declarations

P iiSZiSi“; “instance” variables

int ySpeed;

Ball () {
color = Color.PINK;
size = 50;
xPosition
yPosition
xSpeed
ySpeed

100;
100;

1;
1;

}

Ball (Color color, int size, int xPosition, int yPosition) {
this.color = color;
this.size = size;
this.xPosition = xPosition;

this.yPosition yPosition;
xSpeed = 0;
ySpeed = 0;

}

public static void main(String[] args) {
Ball ball;
ball = new Ball();
ball.move();

Ball ball2;

ball2 = new Ball(Color.BLUE, 100, 10, 500);
System.out.println("ball2 xPosition: " +ball2.xPosition);
ball2.setSpeed(100,100);

ball2.move();

System.out.println("ball2 xPosition after move: " +ball2.xPosition);

}

void move() {
xPosition
yPosition

xPosition + xSpeed;
yPosition + ySpeed;

}

void setSpeed (int xSpeed, int ySpeed) {
this.xSpeed = xSpeed;
this.ySpeed ySpeed;

STRUCTURE

constructors
have same name as class
have no return type

each constructor has
different input parameters

main method

code that runs when you
run the program

other class methods



TODAY: RETURNING TO GRAPHICS
SO WE CAN PLAY WITH OUR BALL



ONE WAY TO WORK WITH GRAPHICS
JFrame, JPanel, and Graphics

» These are all classes that are built into Java

- Someone else wrote them, but we can use them

- They are in the javax.swing and java.awt “packages”
- A package is a collection of classes



ONE WAY TO WORK WITH GRAPHICS
JFrame, JPanel, and Graphics

» JFrame = the window
- JPanel = the surface where we draw things
 Graphics = the collection of things that are drawn



JFrame, JPanel, and Graphics

B

Graphics

\
@

JFrame JPanel



PUTTING IT TOGETHER

JFrame JPanel



PUTTING IT TOGETHER




CREATE A FRAME
CREATE A PANEL
DRAW GRAPHICS ON THE PANEL



OPEN IntelliJ
AND PROJECT FROM LAST CLASS



CREATE A NEW CLASS CALLED
MyFrame.java



IMPORT THE PACKAGES WE NEED:
javax.swing and java.awt

import javax.swing.*;
import java.awt.*;

public class myFrame {

}

the * means that all
classes from those
packages should be
imported



THE FRAME

B

Graphics

\
@

JPanel

JFrame

we want our MyFrame
class to have a frame
and a panel.

(Graphics will be part of
the panel object.)



FIRST PART OF CLASS: VARIABLES

import javax.swing.*;

import java.awt.¥*; we Want our MyFrame
public class myFrame { class to have a frame
rame frame;
jﬁanel panel; and d panel

}



NEXT ELEMENT OF A CLASS?



CONSTRUCTOR

import javax.swing.*;
import java.awt.*;

public class myFrame {
JFrame frame;
JPanel panel;

myFrame() {

}



NEXT ELEMENT OF A CLASS?
we don’t need any methods yet



FILL IN CONSTRUCTOR. HOW?



ASSIGN VALUES TO ALL VARIABLES

import javax.swing.*;
import java.awt.*;

we want our MyFrame

public class myFrame {

JFrame frame; class to have a frame
JPanel panel;
and a panel.
myFrame (JPanel panel) {
frame = new JFrame();
this.panel = panel;
y note: constructor takes

} a panel as an input.



NEED A FEW MORE THINGS

import javax.swing.*;
import java.awt.*;

bublic class myFrame { add the panel to the frame
ey configure the frame

myFrame (JPanel panel) {
frame = new JFrame();
this.panel = panel;
frame.add(panel);
frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);
frame.pack();
frame.setVisible(true);



guestions?



GCREATE-AFRAME
CREATE A PANEL
DRAW GRAPHICS ON THE PANEL



CREATE A NEW CLASS CALLED
MyPanel.java



IMPORT THE PACKAGES WE NEED:
javax.swing and java.awt



JAVA INHERITANCE

- We want our MyPanel class to create objects that are

of type JPanel, with some special additional features

- We can make MyPanel a “subclass” of JPanel

- A way that object oriented programming supports code
efficiency



JAVA INHERITANCE

JPanel

MyPanel is a “subclass” of JPanel
JPanel is a “super” class of MyPanel
All MyPanel objects are JPanel objects

MyPanel objects contain and have
access to all methods and variables
defined in JPanel

MyPanel class can define additional
variables and methods that are not
part of JPanel



CREATING A SUBCLASS

keyword “extends”

subclass name l super class name

\ e

public class MyPanel extends JPanel {

}



guestions?



FIRST PART OF CLASS: VARIABLES

import javax.swing.*;

import java.awt.¥*; Wldth and helght
public class MyPanel extends JPanel { WI” keep traCk Of the
int heighe: size of our panel

}



NEXT ELEMENT OF A CLASS?



CONSTRUCTOR

import javax.swing.¥*;
import java.awt.¥*;

public class MyPanel extends JPanel {
int width;
int height;

MyPanel() {

}



NEXT ELEMENT OF A CLASS?



METHODS



METHODS: A WAY TO DRAW STUFF
THE paintComponent METHOD

import javax.swing.*;
import java.awt.*;

public class MyPanel extends JPanel { we are redeflnlng or
int wideh; “overriding” a

int height;

method defined in
e JPanel
}
@Override

protected void paintComponent (Graphics g) {
super.paintComponent(g);
}
}



NOW GO BACK AND FILL STUFF IN



FILL IN CONSTRUCTOR

MyPanel() {
width = 500;
height = 500;



NEED A FEW MORE THINGS

MyPanel () {
width = 500;
height = 500;
Dimension d = new Dimension(width, height);
setPreferredSize(d);

setVisible(true);
) \ these are methods from

JPanel
set the size
make the panel visible



guestions?



GCREATE-AFRAME
GCREATE-APANEL
DRAW GRAPHICS ON THE PANEL



WHAT DO WE NEED TO ADD
TO USE OUR NEW CLASSES?



ADD A MAIN METHOD

import javax.swing.*;
import java.awt.*;

public class MyPanel extends JPanel {
int width;
int height;

MyPanel() {
width = 500;
height = 500;
Dimension d = new Dimension(width, height);
setPreferredSize(d);
setVisible(true);

} main method

—= contains the code
that actually runs
the entry point

public static void main(String[] args) { 4_,

}

@Override
protected void paintComponent (Graphics g) {
super.paintComponent(g);

}



IN MAIN: CREATE A PANEL & FRAME

public static void main(String[] args) {
MyPanel panel = new MyPanel();
MyFrame frame = new MyFrame(panel);

}

run the code to create
an (empty) window




ADD CODE TO PaintComponent
TO DRAW

protected void paintComponent (Graphics g){
super.paintComponent(g);
setBackground(Color.YELLOW) ;
g.drawLine(0,0,width,height);

}

add code after the
super.paintComponent(g)
line




CAN USE ALL OF THE DRAWING
FEATURES YOU’RE FAMILIAR WITH

protected void paintComponent (Graphics g) {
super.paintComponent(g);
setBackground(Color.YELLOW) ;
g.drawLine(0,0,width,height);
Color ¢ = new Color(73, 11, 155, 255);
g.setColor(c);
g.fillOval(200,200,50,50);






guestions?



NOW WE CAN ADD A BALL



ADD A BALL VARIABLE
TO MyPanel

public class MyPanel extends JPanel {
int width;

int height;
MyPanel () {
width = 500;
height = 500;
Dimension d = new Dimension(width, height);

setPreferredSize(d);
setVisible(true);



CREATE/INSTANTIATE THE BALL
IN THE CONSTRUCTOR

public class MyPanel extends JPanel {
int width;
int height;
Ball ball;

MyPanel () {
width = 500;
height = 500;
(ball = new Ball(Color.BLACK, 100, 100,200);)
Dimension d = new Dimension(width, height);
setPreferredSize(d);
setVisible(true);




HOW TO DRAW THE BALL?
WHERE TO DRAW THE BALL?



GOOD CODING PRACTICE:
ANYTHING THAT A BALL DOES OR
THAT IS DONE TO A BALL
SHOULD HAPPEN IN THE BALL CLASS



GOOD CODING PRACTICE:
ANYTHING THAT AN OBJECT DOES OR
THAT IS DONE TO AN OBJECT SHOULD

HAPPEN IN THAT CLASS



ADD A DRAW METHOD
TO THE BALL CLASS



Thank you!

CS 152
Professor: Leah Buechley
TAs: Melody Horn, Noah Garcia, Andrew Geyko, Juan Ormaza
Time: MWF 10:00-10:50am
https.//handandmachine.cs.unm.edu/classes/CS152_Fall2021/



